Density Functional Theory Based Study of the Electron Transfer Reaction at the Lithium Metal Anode in a Lithium–Air Battery with Ionic Liquid Electrolytes
نویسندگان
چکیده
Room temperature ionic liquids, which have unique properties such as a relatively wide electrochemical stability window and negligible vapor pressure, are promising candidates as electrolytes for developing lithium−air batteries with enhanced performance. The local current density, a crucial parameter in determining the performance of lithium−air batteries, is directly proportional to the rate constant of the electron transfer reaction at the surface of the anode that involves the oxidation of pure lithium metal into lithium ion (Li). The electrochemical properties of ionic liquid based electrolytes, which can be molecularly tailored on the basis of the structure of their constituent cations and anions, play a crucial role in determining the reaction rate at the anode. In this paper, we present a novel approach, based on Marcus theory, to evaluate the effect of varying length of the alkyl side chain of model imidazolium based cations on the rates of electron transfer reaction at the anode. Density functional theory was employed for calculating the necessary free energies for intermediate reactions. Our results indicate that the magnitude of the Gibbs free energy of the overall reaction decreases linearly with the inverse of the static dielectric constant of the ionic liquid, which in turn corresponds with an increase in the length of the alkyl side chain of the ionic liquid cation. Nelsen’s four-point method was employed to evaluate the inner sphere reorganization energy. The total reorganization energy decreases with increase in the length of the alkyl side chain. Finally, the rate constants for the anodic electron transfer reaction were calculated in the presence of varying ionic liquid based electrolytes. The overall rate constant for electron transfer increases with increase in the static dielectric constant. The presented results provide important insight into identification of appropriate ionic liquid electrolytes to obtain enhanced current densities in lithium−air batteries.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملElectrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries
Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the tr...
متن کاملThe Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries
The effect of dissolved gas on the reversibility of a Li/Li electrode in an ionic liquid electrolyte was investigated. Lithium metal is a potential anode in lithium batteries. The ionic liquid electrolyte was saturated with argon, nitrogen, oxygen, air, or carbon dioxide and the coulombic efficiency for the reduction and reoxidation of lithium metal was measured. Secondary ion mass spectroscopy...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملStabilizing lithium metal using ionic liquids for long-lived batteries
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase...
متن کامل